CDMA Technology

Pr. Dr. W. Skupin
www.htwg-konstanz.de

Pr. S. Flament
www.greyc.fr/user/99

On line Course on CDMA Technology
CDMA Technology:

- Introduction to spread spectrum technology
- **CDMA / DS: Principle of operation**
 - Generation of PN Spreading Codes
 - Advanced Spreading codes
 - Principles of CDMA/DS decoding
 - Radio Cells & System Capacity
 - Basics of Global Navigation Satellite Systems
 - Galileo / European GNSS
CDMA / DS:
Principle Of Operation

- Introduction: one Channel with a single data stream
- Real case: one channel with many data
- Signal to noise Ratio and Power control
- Conclusion
Part 1: One channel – one data

Data: Binary Random Signal

Bit value:

| Bit Value | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |

Coding Sequence: Binary pseudo Random Signal

Bit Value:

| Bit Value | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
Real time signals

Data: s_D

Coding Sequence: PN

Coding Sequence Frame (Period)

T_D
Periodicity \rightarrow PSEUDO random signal or Pseudo Noise signal : $pn(t)$ sequence
Part 1: One channel – one data

Data: $s_D(t)$
Time waveform

Data: $s_D(t)$
Power spectrum density $S_{SD}(f)$

First Lobe: 90% of the power

$$SSD(f)$$

$$s_D(t)$$

Time waveform

$$T_D$$

$$(in \ W/Hz)$$

$$(0 \ 1/T_D \ f)$$

Principles of operation
Part 1: One channel – one data

Coding Sequence: PN
Time waveform

Ideal Power spectrum density

Coding PN sequence: Ideal Power spectrum density
$S_{pn}(f)$

(in W/Hz)

T_{PN}
Part 1: One channel – one data

Real coding Sequence:

Coding PN sequence:

Real Power spectrum density

\[S_{pn}(f) \] (in W/Hz)

\[T_D \]

Data

Real Power spectrum density

\(0 \)

\(1/T_{PN} \)

\(f \)
Part 1: One channel – one data

Real coding Sequence:

Data

Discrete Power spectrum density

\[S_{pn}(f) \]

(in W/Hz)

Due to the periodicity of the PN sequence
Part 1: One channel – one data

Real coding Sequence:

Data

Principles of operation
Part 1: One channel – one data

Real coding

Sequence:

Data

If $T_D \gg T_{PN}$

Discrete spectrum

quasi ideal spectrum

If $T_D >> T_{PN}$

PN Period PN Period PN Period
Part 1: One channel – one data

Data

Real coding Sequence:

\[T_D = 7 \cdot T_{PN} \]

Principles of operation

\[1/T_{PN} = 77 \text{ kHz} \]
Data

Real coding Sequence:

\[T_D = 31 \, T_{PN} \]

\[1/T_{PN} = 77 \, \text{kHz} \]
Part 1: One channel – one data

Data

Real coding
Sequence:

\[T_D = 127 \, T_{PN} \]

\[1/T_{PN} = 77 \text{ kHz} \]
Part 1: One channel – one data

In conclusion:

$$S_{SD}(f)$$

$$S_{pn}(f)$$

$$0 \quad 1/T_D \quad 1/T_{PN}$$
Part 1: One channel – one data

Transmitted (coded) signal ‘Tx’ in CDMA/DS

\[s_S(t) = s_D(t) \times p_n(t) \]

Data: \(s_D(t) \)

\[+1 \quad \cdots \quad -1 \]

\(p_n(t) \)

\(+1 \quad \cdots \quad -1 \)

\(s_S(t) \) (Tx)

\(+1 \quad \cdots \quad -1 \)

\(s_D(t) \) negative

\[\text{---> } s_S(t) \text{ opposite to } p_n(t) \]
Part 1: One channel – one data

Transmitted (coded) signal ‘Tx’ in CDMA/DS

Data : $s_D(t)$

$Tx : s_S(t)$

1000110111...

0111001000...

011001000....
Part 1: One channel – one data

Transmitted (coded) signal ‘Tx’ in CDMA/DS

Time domain

\[s_S(t) = s_D(t) \times p_n(t) \]

Frequency domain

\[S_S(f) = S_D(f) \ast S_{pn}(f) \]

Bandwidth: \(1/T_{PN}\)
Transmitted (coded) signal ‘Tx’ in CDMA/DS

Time domain

\[s_S(t) = s_D(t) \times \text{pn}(t) \]

Frequency domain

\[S_{ss}(f) = S_{sd}(f) \ast S_{pn}(f) \]

Bandwidth: \(1/\text{TPN}\)

Coding in time domain ➤ Spreading in frequency domain

Coding sequence = Spreading sequence
Part 1: One channel – one data

Data: $s_D(t)$

$T_D = 127 \ T_{PN}$

Data: $S_D(f)$

Emitted signal: $S_{ss}(f)$
Signal decoding at receiver

\[R_X(t) = s_S \times p_n(t) \]
Signal decoding at receiver

\[R_X(t) = s_S \times p_n(t) \]

Data: \(s_D(t) \)

\(p_n(t) \) at emitter

Tx: \(s_S(t) \)

\(p_n(t) \) at receiver

Rx(t)
Signal decoding at receiver

\[R_X(t) = s_S(t) \times pn(t) \]
\[= s_D(t) \times pn(t) \times pn(t) \]

= 1
Signal decoding at receiver

Principles of operation

Part 1: One channel – one data

Signal decoding at receiver

\[T_x : S_s(t) \rightarrow \text{correlator/despread.} \rightarrow R_x \]

- **Tx :** \(S_s(t) \)
- **Rx :**
- **Synchron. control loop**
- **Loc. code generator**

\[p_n(t) \]

Requirement for spreading code synchronisation
(see next chapters)
Part 2 : One channel – many data

Data:

\[s_{D1} \quad s_{D2} \quad s_{D3} \quad \ldots \quad s_{Dn} \]

Coding sequence:

\[p_{n1} \quad p_{n2} \quad p_{n3} \quad \ldots \quad p_{nn} \]

bit duration \(T_D \)

bit duration \(T_{PN} \)
Part 2: One channel – many data

Data:

s_{D1} s_{D2} s_{D3} \ldots s_{Dn}

Coding sequence:

p_{n1} p_{n2} p_{n3} \ldots p_{nn}

Spread signal:

$s_{S}(t) = s_{D1}(t) \times p_{n1}(t) + s_{D2}(t) \times p_{n2}(t) + \cdots + s_{Dn}(t) \times p_{nn}(t)$

Bit rate: $1/T_{PN}$
Part 2: One channel – many data

Data:

\[s_{D1} \quad s_{D2} \quad s_{D3} \quad \ldots \quad s_{Dn} \]

Coding sequence:

\[p_{n1} \quad p_{n2} \quad p_{n3} \quad \ldots \quad p_{nn} \]

Spread signal:

\[s_s(t) = s_{D1}(t) \times p_{n1}(t) + s_{D2}(t) \times p_{n2}(t) + \cdots + s_{Dn}(t) \times p_{nn}(t) \]

\[+/- 1 \quad +/- 1 \quad +/- 1 \]
Part 2: One channel – many data

Data:

\[s_{D1} \quad s_{D2} \quad s_{D3} \quad \ldots \quad s_{Dn} \]

Coding sequence:

\[p_{n1} \quad p_{n2} \quad p_{n3} \quad \ldots \quad p_{nn} \]

Spread signal:

\[s_S(t) = s_{D1}(t) \times p_{n1}(t) + s_{D2}(t) \times p_{n2}(t) + \ldots + s_{Dn}(t) \times p_{nn}(t) \]

\[\text{non binary signal} \quad \text{/ Bit rate: } 1/ T_{PN} \]
Part 2: One channel – many data

Data:

\[s_{D1} \quad s_{D2} \quad s_{D3} \quad \ldots \quad s_{Dn} \]

Coding sequence:

\[p_{n1} \quad p_{n2} \quad p_{n3} \quad \ldots \quad p_{nn} \]

Spread signal for 2 data streams

+2

0

−2

Principles of operation
Part 2: One channel – many data

Signal decoding at receiver: how to recover data 1?

\[R_X(t) = s_{D1}(t) \times p_{n1}(t) \times p_{n1}(t) + s_{D2}(t) \times p_{n2}(t) \times p_{n1}(t) + \cdots + s_{Dn}(t) \times p_{n}(t) \times p_{n1}(t) = 1 \]
Signal decoding at receiver: how to recover data 1?

\[R_X(t) = s_{D1}(t) + s_{D2}(t) \times p_{n2}(t) \times p_{n1}(t) + \cdots + s_{Dn}(t) \times p_{n1}(t) \]

Time signals

Principles of operation
Signal decoding at receiver: how to recover data 1?

Part 2: One channel – many data

\[R_X(t) = s_{D1}(t) + s_{D2}(t) \times p_{n2}(t) \times p_{n1}(t) + \cdots + s_{Dn}(t) \times p_{n1}(t) \]

Power Spectrum Density

Principles of operation
Part 2: One channel – many data

Signal decoding at receiver: how to recover data 1?

\[\mathbf{R}_x(t) = \mathbf{s}_{D1}(t) + \mathbf{s}_{D2}(t) \times \mathbf{p}_{n1}(t) + \cdots + \mathbf{s}_{Dn}(t) \times \mathbf{p}_{n(t)} \times \mathbf{p}_{n1}(t) \]
Signal decoding at receiver: how to recover data 1?

$$\overline{R_X(t)} = s_{D1}(t) + s_{D2}(t) \times pn_2(t) \times pn_1(t) + \cdots + s_{Dn}(t) \times pn_n(t) \times pn_1(t)$$
Signal decoding at receiver: how to recover data 1?

\[R_X(t) = s_{D1}(t) + s_{D2}(t) \times p_{n2}(t) \times p_{n1}(t) + \cdots + s_{Dn}(t) \times p_{n_n}(t) \times p_{n1}(t) \]

- Data streams \(s_{Di} \) and PN sequences statistically independent

\[s_{Di}(t) \times p_{ni}(t) \times p_{n1}(t) = s_{Di}(t) \times p_{ni}(t) \times p_{n1}(t) \]
Signal decoding at receiver: how to recover data 1?

\[R_x(t) = s_{D1}(t) + s_{D2}(t) \times pn_2(t) \times pn_1(t) + \cdots + s_{Dn}(t) \times pn_n(t) \times pn_1(t) \]

Cross-correlation of PN sequences
Signal decoding at receiver: how to recover data 1?

\[R_x(t) = s_{D1}(t) + s_{D2}(t) \times \frac{p_{n2}(t) \times p_{n1}(t)}{p_{n1}(t)} + \cdots + s_{Dn}(t) \times \frac{p_{nn}(t) \times p_{n1}(t)}{p_{n1}(t)} \]

Proper selection of uncorrelated PN sequences enhances effect of low pass filtering.
Part 2: One channel – many data

Principles of operation
Part 2: One channel – many data

Principles of operation

Data 1

R_x

s_s

$T_x : s_s(t)$

X

R_x

Band-Filter $[0 ; 1/T_D]$

R_x

Threshold detector

Data 1

recovered

pn_1
How many datas on one single channel?

\[R_X(t) = s_{D1}(t) + s_{D2}(t) \times \frac{p_{n2}(t) \times p_{n1}(t)}{\alpha} + \cdots + s_{Dn}(t) \times \frac{p_{n}(t) \times p_{n1}(t)}{\alpha} \]

Assuming a constant positive value ‘\(\alpha\)’ for PN sequences cross-correlation:

\[R_X(t) = s_{D1}(t) + s_{D2}(t) \times \alpha + \cdots + s_{Dn}(t) \times \alpha \]
Part 3: Signal to noise ratio / Power control

How many datas on one single channel?

Assuming a constant positive value ‘α‘ for PN sequences cross-correlation:

$$\overline{R_X(t)} = s_{D_1}(t) + s_{D_2}(t) \times \alpha + \cdots + s_{D_n}(t) \times \alpha$$

Worst case:

$$\begin{cases}
 s_{D_1} = +1 \quad \text{and} \quad s_{D_2} = s_{D_3} = \ldots = s_{D_n} = -1 \\
 \overline{R_X(t)} = 1 - (n-1) \times \alpha
\end{cases}$$
Part 3: Signal to noise ratio / Power control

How many datas on one single channel?

Assuming a constant positive value ‘α‘ for PN sequences cross-correlation:

$$R_X(t) = s_{D1}(t) + s_{D2}(t) \times \alpha + \cdots + s_{Dn}(t) \times \alpha$$

Worst case:

$$\begin{cases}
 s_{D1} = +1 \quad \text{and} \quad s_{D2} = s_{D3} = \ldots = s_{Dn} = -1 \\
 R_X(t) = 1 - (n-1) \times \alpha
\end{cases}$$

If $$|n \times \alpha| > 1$$ then the sign of $$R_X(t)$$ is different from the sign of $$s_{D1}$$

Error: system capacity is fixed by the sequences cross-correlation value
How many datas on one single channel?

Assuming a constant positive value ‘α’ for PN sequences cross-correlation:

\[
\overline{R_X(t)} = s_{D1}(t) + s_{D2}(t) \times \alpha + \cdots + s_{Dn}(t) \times \alpha
\]

Worst case:

\[
\begin{cases}
 s_{D1} = +1 \quad \text{and} \quad s_{D2} = s_{D3} = \ldots = s_{Dn} = -1 \\
 \overline{R_X(t)} = 1 - (n - 1) \times \alpha
\end{cases}
\]

→ the smaller is \(\alpha \) the larger \(n \) can be
Signal to noise ratio

Assuming a constant positive value ‘α’ for PN sequences cross-correlation:

$$R_X(t) = s_{D1}(t) + s_{D2}(t) \times \alpha + \cdots + s_{Dn}(t) \times \alpha$$

Power \(P\)
Signal to noise ratio

Assuming a constant positive value ‘α’ for PN sequences cross-correlation:

$$R_X(t) = s_{D1}(t) + s_{D2}(t) \times \alpha + \cdots + s_{Dn}(t) \times \alpha$$

‘Signal’ ‘Noise’
Assuming a constant positive value ‘α’ for PN sequences cross-correlation:

$$R_X(t) = s_{D1}(t) + s_{D2}(t) \times \alpha + \cdots + s_{Dn}(t) \times \alpha + \text{Johnson Noise}$$

\(\text{‘Signal’}\)

\(\text{‘Johnson White noise’}\)

White noise power spectrum density

Noise equivalent bandwidth of bandfilter
Part 3: Signal to noise ratio / Power control

Signal to noise ratio

Assuming a constant positive value \(\alpha \) for PN sequences cross-correlation:

\[
R_X(t) = s_{D1}(t) + s_{D2}(t) \times \alpha + \cdots + s_{Dn}(t) \times \alpha + \text{Johnson Noise}
\]

\[
\begin{align*}
\text{‘Signal’} & \\
\text{‘Noise’} &
\end{align*}
\]

Signal to Noise ratio including white noise:

\[
\frac{S}{N} = \frac{P}{(n-1) \cdot P \times \alpha + N_o \times B_{eq}}
\]
What happens in case of non-uniform power of data streams?

Situation 1:
- n_{max} datas of power P --> minimum S/N leading to error free transmission

\[
\frac{S}{N}_{\text{min}} = \frac{P}{(n_{\text{max}} - 1) \cdot P \times \alpha}
\]

(White noise neglected)

Situation 2:
- n_{max} datas
- Data 1 to $(n-1)$ of power P and n^{th} Data of power $(\beta \cdot P) > P$

\[
R_X(t) = s_{D1}(t) + s_{D2}(t) \times \alpha + \ldots + s_{Dn}(t) \times \alpha
\]

Principles of operation
What happens in case of non-uniform power of data streams?

Situation 1:
- n_{max} datas of power P --> minimum S/N leading to error free transmission

\[
\frac{S}{N}_{\text{min}} = \frac{P}{(n_{\text{max}} - 1) \cdot P \times \alpha}
\]

(White noise neglected)

Situation 2:
- n_{max} datas
- Data 1 to (n-1) of power P and n^{th} Data of power $(\beta \cdot P) > P$

\[
\frac{S}{N} = \frac{P}{(n_{\text{max}} - 1 + \beta) \cdot P \times \alpha} < \frac{S}{N}_{\text{Min}}
\]
What happens in case of non-uniform power of data streams?

Situation 1:
- \(n_{\text{max}} \) datas of power \(P \) --> minimum S/N leading to error free transmission

\[
\frac{S}{N}_{\text{min}} = \frac{P}{(n_{\text{max}} - 1) \cdot P \times \alpha}
\]

(White noise neglected)

Situation 2:
- \(n_{\text{max}} \) datas
- Data 1 to (n-1) of power \(P \) and \(n^{th} \) Data of power \((\beta \cdot P) > P \)

\[
\frac{S}{N}\left|_{\text{Data 1 to (n-1)}}\right. = \frac{P}{(n_{\text{max}} - 1 + \beta) \cdot P \times \alpha} < \frac{S}{N}\left|_{\text{Min}}\right.
\]

Data 1 to (n-1) lost
What happens in case of non-uniform power of data streams?

Situation 1:
- n_{max} datas of power P --> minimum S/N leading to error free transmission

$$\frac{S}{N}_{\text{min}} = \frac{P}{(n_{\text{max}} - 1) \cdot P \times \alpha}$$
(White noise neglected)

Situation 2:
- n_{max} datas
- Data 1 to $(n-1)$ of power P and n^{th} Data of power $(\beta \cdot P) > P$

$$\frac{S}{N}_{n^{\text{th}} \text{Data}} = \frac{\beta \cdot P}{(n_{\text{max}} - 1 + \beta) \cdot P \times \alpha} \approx \beta \cdot \frac{S}{N}_{\text{Min}} > \frac{S}{N}_{\text{Min}}$$

Only data n is detected
-CDMA/DS allow transmission of many data on one single channel

-Data are coded using binary pseudo random sequences with a bit rate much larger than the bit rate of Data

-Coding causes the spreading of all data over the same band

-Recovering of data at receiver requires:
 -pseudo random sequences at receiver identical to pseudo sequences at emitter
 -pseudo sequences at receiver synchronized with pseudo sequences at emitter
 -pseudo sequences as low correlated as possible
 -all coded Data to be transmitted with the same power
Blockdiagram of a CDMA/DS System

signals:
\[s_D \equiv \text{data signal} \]
\[s_S \equiv \text{spread signal (baseband)} \]
\[s_S' \equiv \text{spread signal (rf carrier)} \]

bandwidths:
\[B_D \equiv \frac{1}{T_D} \]
\[B_S \equiv \frac{1}{T_{PN}} \text{ (baseband)} \]
\[B_{S'} \equiv \text{transmission bandwidth (spread rf bandwidth)} \]
- If needed, a few related to spread spectrum systems: